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Abstract
Background  Highly-effective CFTR-modulator therapy with elexa-/teza-/ivacaftor (ETI) has led to improvements 
in pulmonary outcomes, sweat chloride, body mass index (BMI) and quality of life in people with cystic fibrosis 
(CF). Improved uptake of fat-soluble vitamins and micronutrients has been reported for CFTR-modulators but data 
regarding ETI therapy is lacking.

Methods  This single-center retrospective study evaluated forced expiratory volume in one second (FEV-1), sweat 
chloride, BMI, transaminases (AST, ALT), bilirubin, vitamins A, D, E, zinc and selenium in children and adults eligible for 
ETI. Parameters were assessed before and up to one year after initiation of ETI.

Results  58 patients (median age m = 28 years, SD ± 11.6 years, 51.7% female14 < 18 years old) were included. 
FEV-1 and sweat chloride improved significantly after ETI. There were no changes in BMI or AST. ALT was increased 
significantly after 4 weeks of ETI but returned to normal levels in further course. Bilirubin levels remained elevated 
after ETI. Vitamin A was significantly higher 12 months after ETI. No changes were found for vitamins D, E, zinc and 
selenium.

Conclusions  This study adds to the evidence that improvements of some fat-soluble vitamin levels can be found 
after ETI. No changes regarding micronutrients were noted. Individualized follow-up and supplementation are 
recommended.
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Background
Cystic fibrosis (CF) is a multi-system condition caused 
by mutations in the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene that cause impaired 
production or functioning of the CFTR-protein which is 
essential for chloride and bicarbonate transport across 
epithelial cell membranes [1]. Mal- or nonfunctioning 
CFTR leads to pathologic viscosity of secretions in the 
lungs, pancreas, intestines, and reproductive organs. 
Besides pulmonary pathology, cystic fibrosis is charac-
terized by pancreatic insufficiency in many patients and 
the majority of patients show signs of pancreatic insuf-
ficiency already at birth [2, 3]. Intestinal inflammation 
and gastrointestinal symptoms often cause impaired 
appetite contributing to poor weight gain [4]. Both pan-
creatic insufficiency and persistent intestinal inflam-
mation have been reported to cause reduced intestinal 
absorption of fat and fat-soluble vitamins (vitamins A, 
D, E, and K) as well as trace elements as zinc and sele-
nium in CF [5]. Pancreatic enzyme replacement therapy 
(PERT) is a cornerstone of treatment of pancreatic insuf-
ficiency in CF. Pancreatic lipase containing formulations 
have to be administered with every meal, depending on 
its fat content. A high-calorie, high-protein and high-
fat diet has been traditionally recommended for people 
with CF. Fat-soluble vitamins need to be supplemented as 
most patients with CF and PERT alone develop vitamin 
deficiencies and the levels of fat-soluble vitamins need to 
be monitored regularly [6, 7]. Less data exist regarding 
micronutrients such as zinc and selenium but these trace 
elements are supplemented by many patients with CF [8].

The development of CFTR-modulators, a group of 
small molecules that includes CFTR-correctors and 
CFTR-potentiators, has been a breakthrough for many 
people with CF [9]. Depending on the genotype, differ-
ent CFTR-modulators are indicated. Improvement of 
both intestinal inflammation and in some cases even 
in pancreatic function have been reported for luma-
caftor/ivacaftor [10–12]. Highly-effective CFTR-modu-
lator therapy, containing the correctors elexacaftor and 
tezacaftor as well as the potentiator ivacaftor (ETI), has 
shown dramatic positive effects on pulmonary function, 
reduction of pulmonary exacerbations, body mass index 
(BMI) and quality of life [13–15]. ETI is approved in peo-
ple with cystic fibrosis with one Phe508del plus a minimal 
or residual function mutation in CFTR (at the moment 
in individuals ≥ 2 years in Europe). A temporary increase 
in transaminases and bilirubin is well known after start 
of ETI therapy [13, 15, 16]. ETI therapy also seems to 
influence intestinal uptake of nutrients, including vita-
mins and trace elements. Individuals with cystic fibrosis 
for the first time face new challenges regarding nutrition 
[17] and many traditional treatment concepts, including 
fat-soluble vitamin and micronutrient supplementation 

should be evaluated. Some data exist regarding fat-solu-
ble vitamins and trace elements in people with CF who 
were treated with CFTR-modulators:

Vitamin A is crucial for antioxidative functions, immu-
nity, cell proliferation as well as differentiation of cells 
[18]. Normal vitamin A levels are associated with better 
pulmonary outcomes in CF [19]. Vitamin A deficiency 
was becoming rare in CF even before CFTR-modulator 
therapy and elevated serum vitamin A levels were more 
frequently observed [20]. After initiation of lumacaftor/
ivacaftor higher vitamin A levels have been reported [21, 
22]. Both improved vitamin A levels [23] but also case 
reports of vitamin A intoxication after start of ETI have 
been published [24, 25].

Vitamin D is essential for bone metabolism and plays 
important roles in immunity, microbiome and pulmonary 
health [18]. Data exist regarding better pulmonary func-
tion in individuals with CF and optimal vitamin D lev-
els but a meta-analysis could not confirm these findings 
[26]. In rare cases vitamin D toxicity has been reported 
in CF-patients even in the pre-CFTR-modulator era and 
these were mainly caused by dosing errors while prepar-
ing individualized medications [27]. Both luma-/ivacaftor 
and ETI therapy have been shown to improve vitamin D 
levels [21, 23, 28].

Vitamin E has antioxidant functions. There is no clear 
link between optimal vitamin E levels and health in CF 
[29]. Higher levels of Vitamin E have been shown after 
therapy with luma-/ivacaftor [21, 30] and with ETI treat-
ment [23].

Vitamin K is best known for its importance in syntheti-
zation of clotting factors II, VII, IX, and X. Many individ-
uals with CF have vitamin K deficiency but detrimental 
effects are rare [31]. Effects of overdosing or changes after 
CFTR-modulator therapy have not been described [18].

Zinc is a trace element with metabolic, antioxidative 
and anti-inflammatory properties. Zinc deficiency has 
been associated with failure to thrive, reduced pulmo-
nary function, bone disease and impaired glucose toler-
ance in CF [32]. Zinc supplementation might help reduce 
pulmonary exacerbations in children with CF [33]. There 
are no data on zinc levels under ETI therapy.

Selenium is also a trace element with antioxidative, 
anti-inflammatory and metabolic functions. An increase 
in selenium levels was noticed after 10 months of treat-
ment with lumacaftor/Ivacaftor [30]. It is unclear though 
if an optimal selenium level exists and supplementation 
of selenium is not associated with better patient out-
comes in CF [8]. No data on selenium levels after ETI 
therapy have been published.

Even though changes in fat-soluble vitamins and in 
trace element levels have been found after onset of 
CFTR-modulator therapy there still is a lack of data 
regarding these changes after initiation of highly-effective 
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CFTR-modulator therapy with ETI in a larger cohort and 
especially in children with CF. The aim of our study was 
to provide real-life insights of changes in fat-soluble vita-
min and trace element concentrations in children and 
adults with CF, homozygous or heterozygous for Phe-
508del, who started ETI therapy. Subjects have been fol-
lowed up for at least 12 months.

Methods
Patient identification
Patients who were treated at our outpatient CF-clinic 
were screened for their eligibility for ETI-treatment 
according to their respective CFTR-mutations and 
according to European approval of ETI. Patients were 
informed about ETI therapy including potential ben-
efits and possible adverse effects. If patients consented, 
therapy with ETI was started. ETI therefore was part of 
patients’ routine care and this is an observational retro-
spective study. This study included patients who started 
ETI therapy between August 21st, 2020 and March 1st, 
2022, therefore mainly adults and some children < 18 
years were included. All patients were screened regarding 
their liver function before initiation of ETI therapy. All 
patients with pre-existing CF-hepatopathy or increased 
transaminases or bilirubin received ursodeoxycholic 
acid. All persons with CF undergo regular routine labo-
ratory work at our institution and laboratory parameters 
done about 12 months and four weeks before start of ETI 
were included in the analysis. Blood collections regard-
ing liver function parameters (ALT, AST, bilirubin) were 
performed 4 weeks after start of ETI and three, six, nine 
andl 12 months after beginning ETI therapy. Additional 
laboratory work was performed in exacerbations or 
other patient-dependent individual circumstances. All 
laboratory work was part of patients’ routine care and 
done at the treating physician’s discretion. At our insti-
tution subjects with CF undergo yearly extensive addi-
tional laboratory testing including evaluation of vitamins 
A, D, E and trace elements (zinc and selenium) as sug-
gested [34]. These appointments occurred at least once 
before and twice after initiation of ETI in the time period 
reported. Time intervals to therapy initiation varied 
across the cohort. Not all patients had laboratory work-
up performed at all time-points and missing data was 
not an exclusion criterium for this study. Sweat chloride 
was measured before initiation of ETI and three months 
afterwards. Pulmonary function tests were performed 
according to global lung initiative/European Respira-
tory Society guidelines [35] at least every three months 
and additionally four weeks after start of ETI. Exclusion 
criteria included genotype not eligible for ETI treatment, 
age < 6 years, poor pulmonary function (forced expira-
tory volume in one second in percent predicted (FEV-
1%pred) < 40%, liver cirrhosis, pancreatic sufficiency 

(fecal elastase > 200  µg/g stool) and known poor adher-
ence to medication. If patients experienced an acute 
exacerbation, any laboratory results obtained at the same 
time were excluded from the study.

Supplementation, laboratory work-up & pulmonary 
function tests
Supplementation of vitamins and trace elements was 
conducted according to current guidelines [36]. All 
patients received combination preparations including 
vitamin A, vitamin D, vitamin E, vitamin K, zinc, and 
selenium. Patients were questioned regarding additional 
vitamin supplementation (e.g. prescribed by their pri-
mary physicians or bought over the counter). If amounts 
of vitamins taken were deemed acceptable by the treat-
ing physician’s respective laboratory values were not 
excluded. All patients took PERT. Levels of vitamins A, 
D and E as well as zinc and selenium were measured at 
the central laboratory services of our University Hospi-
tal. Vitamin K measurement was locally not available and 
therefore is not included in routine laboratory check-ups. 
We decided against including coagulation measures as 
surrogate parameters as no changes have been reported 
after CFTR-modulator therapy at least for lumacaftor/
ivacaftor [22]. Vitamins A and E were measured via high-
performance liquid chromatography (Chromsystems 
Instruments & Chemicals GmbH, Graefelfing, Germany), 
Vitamin D via electro-chemi-luminescense-immunoassay 
(Roche, Basel, Switzerland). ALT, AST, total bilirubin 
and zinc were measured photometrically on the Cobas 
C system (Roche, Basel, Switzerland) and selenium by 
graphite tube atomic absorption spectroscopy. Sweat 
chloride measurements were performed on the FKGO 
chloridemeter 20 (Kreienbaum, Langenfeld, Germany). 
Pulmonary function tests were performed according 
to European Respiratory Society (ERS) Guidelines and 
published reference values for FEV-1 were used [35, 37]. 
Pulmonary function tests were performed with the “Mas-
ter Screen Body” (Vyaire Medical GmbH, Höchberg, 
Germany).

Ethics
Ethics approval  was obtained from the Ulm Univer-
sity ethics committee (permit number 228/21, April 5th, 
2022). As this was a retrospective study the need for 
additional informed consent was waived by the ethics 
committee.

Data analysis and statistics
The statistical analysis was conducted using GraphPad 
Prism (Version 7.01, GraphPad Software, La Jolla, CA, 
USA, www.graphpad.com). Categorical data were pre-
sented as means and standard deviations. For temporal 
differences, t-tests for pairwise differences and sign rank 

http://www.graphpad.com
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tests were utilized based on the distribution of the data. 
The significance level was set at p < .05.

Results
Between August 21st, 2020 and March 1st, 2022, 58 
patients (30 female, 28 male) started ETI therapy at 
our institution and could be followed up for at least 12 
months. Patients were 7–59 years old (m = 28.7 years, 
SD ± 11.6 years) (Table  1). 8 patients had been treated 
with lumacaftor/ivacaftor before. FEV-1 increased sig-
nificantly from 2.3  l (64%pred) before ETI to 2.69  l 
(75.6%pred) 12 months after ETI (p < .001). BMI was 
21.88  kg/m2 before and 21.59  kg/m2 after 12 months of 
therapy with no significant change (p = .65) (Table 2).

After initiation of ETI patients showed a mild increase 
of AST that was not significant (Table  3; Fig.  1A). AST 
values normalized to similar levels as before during fur-
ther course. Patients showed a significant increase of 
ALT four weeks after ETI start and a return to similar 
levels as before ETI in the following months (Fig.  1B). 

Bilirubin levels significantly increased after ETI and val-
ues remained significantly higher than before ETI dur-
ing the follow-up (Fig.  1C). One patient was diagnosed 
with Gilbert’s syndrome due to persistent isolated eleva-
tion of bilirubin. Two further patients are suspected to 
have Gilbert’s syndrome but confirmation is pending. 
Four patients had to pause ETI therapy due to increased 
ALT/AST or bilirubin but all could re-start therapy and 
tolerated ETI well in further course. No further clinical 
abnormalities, for example abdominal pain, pruritus or 
icterus, were reported. No differences between both zinc 
and selenium levels at different time-points of follow-
up were identified (Fig.  2A & B). Interestingly the most 
elevated selenium levels were seen in post-menopausal 
women. Vitamin A levels continuously rose during the 
study and the levels at 12 months’ follow-up were signifi-
cantly higher than before ETI (Fig. 3A). Vitamin D levels 
showed a fluctuating course but no significant changes 
(Fig. 3B). Some patients showed persistent marked vita-
min D deficiency even after starting ETI therapy and 
despite increased supplementation. Vitamin E values 
increased during the study but no significant change 
over the period of the study was noted (Fig. 3C). Sweat 
chloride fell significantly after ETI (p < .01) and val-
ues remained lower than before ETI during follow-up 
(Table 3).

No signs or symptoms of hypervitaminosis or vita-
min-intoxication were found. Individuals with signifi-
cantly elevated zinc, selenium, or vitamin levels received 

Table 1  Demographic data of the cohort. n = number
number Female: n 

(%)
Phe508del 
homozygous: 
n (%)

Phe508del 
heterozy-
gous: n (%)

Total cohort 58 30 (51.7) 32 (55.2) 26 (44.8)
> 18 years 44 25 (56.8) 23 (52.3) 21 (47.7)
12–18 years 13 5 (38.4) 9 (69.2) 4 (30.8)
6–12 years 1 0 (0) 0 (0) 1 (100)

Table 2  Means and standard deviations of body mass index (BMI) and forced expiratory volume in 1 s (FEV-1) before and after ETI 
therapy. SD = standard deviation

BMI [kg/m2], mean (± SD) FEV-1: [%pred], mean (± SD)
4 weeks pre 12 months post p-value pre/post 4 weeks pre 12 months post p-value pre/post

Total cohort 21.88 (± 4.19) 21.96 (± 3.03) n.s. 64.14 (± 25.68) 75.57 (± 26.53) < 0.001
> 18 years 22.52 (± 4.17) 22.43 (± 2.67) n.s. 56.77 (± 21.35) 66.63 (± 22.74) < 0.001
12–18 years 20.24 (± 3.55) 20.42 (± 3.59) n.s. 87.38 (± 24.29) 103.08 (± 16.57) 0.03
6–12 years 15 15 n.s. 90 89 n.s.

Table 3  Means and standard deviations of AST, ALT, total bilirubin, vitamin A, vitamin D, vitamin E, zinc, selenium, and sweat chloride 
before and after initiation of ETI therapy. Vitamins and trace elements were not evaluated four weeks after start of ETI therefore values 
are missing. Values are represented in bold print if the change was significant (p < .05) compared to 4 weeks prior to ETI therapy and in 
italic print if significantly different to 12 months before ETI. ALT = alanine aminotransferase, AST = aspartate aminotransferase
Laboratory value [unit] 
(normal range)

12 months 
before start

4 weeks 
before start

4 weeks after 
start

3 months 
after start

6 months after 
start

9 months after 
start

12 months 
after start

AST [U/l] (< 35) 30.68 ± 14.91 29.04 ± 11.6 35.15 ± 18.56 29.74 ± 12.26 31.85 ± 18.79 32.39 ± 14.91 30.75 ± 16.24
ALT [U/l] (< 34) 30.49 ± 32.09 26.18 ± 15.55 38.35 ± 24.25 31.66 ± 21.47 36.94 ± 39.41 33.22 ± 26.39 35.09 ± 48.00
total bilirubin [µmol/l] (2–21) 8.02 ± 8.68 7.32 ± 7.61 14.89 ± 13.61 13.93 ± 12.77 14.23 ± 14.97 11.74 ± 7.73 14.19 ± 10.49
vitamin A [µmol/l] (1.05–2.8) 1.37 ± 0.41 1.41 ± 0.64 1.57 ± 0.53 1.47 ± 0.39 1.53 ± 0.39 1.74 ± 0.38
vitamin D [µg/l] (20–50) 26.76 ± 10.52 27.26 ± 9.05 29.33 ± 9.29 25.36 ± 8.70 25.07 ± 9.00 31.06 ± 8.64 28.23 ± 17.78
vitamin E [µmol/l] (12–42) 23.15 ± 7.33 24.02 ± 8.51 25.81 ± 10.4 25.72 ± 8.68 27.88 ± 9.24 28.6 ± 11.85
zinc [µmol/l] (10.7–18.4) 10.87 ± 1.56 13.77 ± 2.56 11.94 ± 2.48 11.15 ± 1.90 12.38 ± 2.90 13.5 ± 2.16
selenium [µg/l] (60–130) 108.7 ± 52.31 224 ± 187.5 442.80 ± 396.30 117.90 ± 79.90 269.50 ± 295.30 190.50 ± 115.70 164.80 ± 170.60
Sweat chloride [mmol/l] 
(< 30)

87.67 ± 22.37 101.70 ± 25.20 56.67 ± 20.21 63.25 ± 24.11 55.81 ± 25.52 49.30 ± 8.20 62.5 ± 32.51
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Fig. 1  A: No changes in aspartate-aminotransferase levels before and up to 12 months after start of ETI. B: Significant change of alanine-aminotransferase 
four weeks after initiation of ETI, no other changes. C: Significant and persistent elevation of total bilirubin levels after start of ETI at all timepoints com-
pared to before start of ETI therapy. Reference ranges of AST (< 35 U/l), ALT (< 34 U/l) and bilirubin (2–21 µmol/l) are indicated in grey. AST = aspartate-
aminotransferase, ALT = alanine-aminotransferase, ETI = elexa-/teza-/ivacaftor.
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appropriately adjusted substitution therapy. Therefore, 
the observed changes in vitamin levels under ETI even 
could be understated because of adjusted substitution 
therapy. Previous therapy with luma-/ivacaftor in eight 
patients did not correlate with changes of any laboratory 

parameters or sweat chloride measurement after start of 
ETI.

There were no significant differences in labora-
tory parameters, sweat chloride or pulmonary func-
tion between children < 18 years and adults with cystic 
fibrosis. Homozygous or heterozygous genotype for 

Fig. 2  A: No changes in zinc plasma levels before and up to 12 months after start of ETI. B: No changes in selenium levels before and up to 12 months 
after start of ETI therapy in patients with cystic fibrosis. Missing data for zinc levels 4 weeks after start of ETI. Reference ranges of zinc (9–22 µmol/l) and 
selenium (50–120 µg/l) are indicated in grey. ETI = elexa-/teza-/ivacaftor.
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Fig. 3  A: Significant increase of Vitamin A 12 months after start of ETI therapy in patients with cystic fibrosis. B: No changes in serum vitamin D levels and 
C: No changes in vitamin E levels over the study period after initiation of ETI therapy. Missing data at timepoint 4 weeks after start of ETI for vitamins A & 
E. Reference ranges of vitamin A (1.05–2.8 µmol/l), vitamin D (20–50 µg/l) and vitamin E (12–42 µmol/l) are indicated in grey. ETI = elexa-/teza-/ivacaftor.
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Phe508del did not have an influence on any of the param-
eters as well. We did not observe differences over time 
depending on age or genotype in our cohort.

Discussion
The data presented here show an improvement in both 
pulmonary function (measured in FEV1%pred) and 
sweat chloride in children and adults with cystic fibro-
sis homozygous and heterozygous for Phe508del treated 
with elexa-/teza-/ivacaftor. Changes in this heterogenous 
cohort are similar to previous reports regarding pulmo-
nary function and sweat chloride [13, 16]. Neither age 
nor genotype did have an impact on laboratory param-
eters or pulmonary function in our study therefore only 
data of the whole cohort are reported. More evidence on 
extrapulmonary effects of ETI is emerging. This study 
shows effects on liver function tests, vitamin and trace 
element concentrations. In our cohort with an already 
normal BMI before ETI we did not find any significant 
change in weight as was found previously [13]. This 
discrepancy might be due to the heterogenous cohort 
including both children, pre-/postpubertal adolescents, 
and adults with CF.

ETI was well tolerated in our cohort. ETI therapy had 
to be paused briefly shortly after commencement of ther-
apy in four individuals but all could continue ETI without 
significant side-effects. We found a significant increase 
of ALT four weeks after therapy initiation but levels 
returned to previous values in further course. Interest-
ingly total bilirubin was permanently elevated after ETI 
but most patients still showed bilirubin values within the 
reference range. Increases of transaminases and bilirubin 
are well known side-effects of ETI therapy and only tem-
porary in nature in most cases [13, 38, 39]. The data pre-
sented here show that most changes in transaminases or 
bilirubin were either transient in nature or values stayed 
in the normal ranges. Therefore, a change in patient care 
does not seem to be warranted but close follow-up is 
recommended. In one patient with persistent elevated 
indirect bilirubin Gilbert’s syndrome was diagnosed. 
Persistent isolated increase of bilirubin after ETI have 
demasked Gilbert’s syndrome in some cases after initia-
tion of CFTR-modulator therapy [39, 40]. Liver enzymes 
and bilirubin are routinely evaluated after start of ETI. 
Persistent elevation of indirect bilirubin alone should 
lead to further diagnostics regarding Gilbert’s syndrome. 
Identification of Gilbert’s syndrome might allow patients 
to continue with ETI therapy despite bilirubin elevations 
even over the reference range.

In a mixed cohort of both children and adults with 
cystic fibrosis and different genotypes we found a sig-
nificant increase of vitamin A 12 months after therapy 
with ETI and already normal values before therapy. Only 
one patient had elevated levels over 3.5 µmol/l before 

ETI therapy. No toxic effects were noted during the 
study period. Of note no patient showed pathologically 
increased vitamin A values, therefore supplementation 
of vitamin A was not changed in our cohort. Our cohort 
showed varying vitamin D levels and some patients still 
experienced vitamin D deficiency even after ETI therapy. 
No changes were found in vitamin D levels after initiation 
of ETI. Vitamin E levels rose continuously over the fol-
low-up but the increase in vitamin E levels was not signif-
icant. The exact causes for improved uptake of vitamins 
and trace elements after initiation of CFTR-modulating 
therapy are not well understood. It has been suggested 
that cholesterol biosynthesis and uptake of cholesterol 
and fat-soluble micronutrients can be improved with 
CFTR-modulator therapy [22, 41, 42]. Reduced intes-
tinal or pulmonary inflammation might contribute to 
improved vitamin levels as well [10, 43]. Additionally, 
patients might benefit from improved pancreatic func-
tion after start of CFTR-modulators [11, 44, 45] and this 
might influence uptake of vitamins and trace elements as 
well. Other reasons might include changes in intestinal 
pH, intestinal absorption of bile salts or changes in intes-
tinal transit time [46]. Gaschignard et al. reported signifi-
cantly increased Vitamin E levels 10 months after therapy 
with luma-/ivacaftor and Gelzo et al. reported higher 
vitamin E levels after luma-/ivacaftor therapy as well [21, 
30]. Sommerburg et al. on the contrary reported a mod-
erate but significant decrease in vitamin E and vitamin E/
cholesterol one and two years after luma-/ivacaftor [22]. 
Vitamin A and D levels also rose, not-significantly in 
one study [30] but another report shows increased vita-
min A levels [22]. Similar results have been published for 
ETI therapy: Both vitamins A and D levels increased in 
an adult cohort and vitamin A increased in a pediatric 
cohort [28, 41, 42]. A general improvement of fat-soluble 
vitamin levels has been reported as well after one year of 
ETI therapy in adults [23]. In some pediatric cases even 
hypervitaminosis A has been reported [47]. No changes 
in vitamin E and INR as an indirect measurement of vita-
min K in adults and no changes in vitamin D and E lev-
els in children were reported [41, 42]. Our data therefore 
are in accordance with the published literature regarding 
vitamin levels after start of highly-effective CFTR-mod-
ulator therapy with ETI. Slight differences in some vita-
mins could be explained by the different age structure 
of the respective cohorts and small patient numbers. In 
addition, measurements of vitamins did not occur at each 
study time point. A correlation of vitamin D levels with 
the season did not take place in our study. Even as fat-sol-
uble vitamin deficiencies had been becoming less com-
mon before ETI therapy [22, 41] it seems worthwhile to 
follow-up individuals with cystic fibrosis more frequently 
regarding their vitamin status as an increase in levels of 
fat-soluble vitamins has been reported in most studies. 
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The details regarding different vitamins differ between 
the studies but all come to the same conclusion: fat-sol-
uble vitamin levels should be monitored more closely 
after ETI start than before. Evaluation of fat-soluble vita-
mins seems sensible after three, six, and 12 months of 
treatment and yearly afterwards. Regarding vitamin A it 
seems worthwhile to supplement with the lowest possible 
dose, especially in children. Data on vitamin E are less 
clear but no negative effects of increased vitamin E levels 
have been reported. Vitamin D seems to be affected the 
least and seasonal fluctuations must be considered.

The trace elements zinc and selenium were less fre-
quently measured in the study presented here. Overall, 
no changes in these micronutrients were found before or 
after ETI therapy. Elevated levels for selenium were noted 
in post-menopausal females but no clinical significance 
could be determined. Similar considerations to those 
for improved vitamin absorption may apply to trace ele-
ments once ETI therapy is initiated. Zinc or selenium 
deficiency had become rare in CF even before ETI due 
to optimized supplementation. Especially the avoidance 
of zinc deficiency is associated with better outcomes in 
CF [32]. So far only one study showed an increase of sele-
nium levels after therapy with lumacaftor/ivacaftor [30]. 
The study presented here is therefore the first to report 
outcomes regarding zinc and selenium levels after start 
of ETI therapy. Routine monitoring of trace elements is 
recommended and results need to be interpreted on a 
patient-individualized basis.

What’s new about this study?
In the last two years, some evidence has been published 
that levels of fat-soluble vitamins increase after start of 
therapy with ETI in children and in adults and in differ-
ent genotypes [21, 23, 28, 41, 42]. This study confirms 
these findings in a mixed cohort and adds to the evidence 
that neither age nor genotype seem to influence vitamin 
levels. This study is the first that examines trace element 
levels (zinc and selenium) after start of ETI. While the 
study is too small to draw generalizable conclusions, it 
is important to monitor trace element levels individually 
and adjust supplementation in some people with CF.

Limitations
This is a retrospective monocentric study with a lim-
ited number of participants. The cohort consists of 
both children and adults with CF and includes both 
persons homozygous and heterozygous for Phe508del. 
Even though no differences in laboratory results were 
found depending on age or genotype the heterozygous 
study population has to be considered when interpret-
ing results. Vitamins and trace elements were monitored 
not as frequently as other parameters and at some time-
points only few laboratory values were included. Even 

though the study team tried to document all additional 
vitamin intake patients may have supplemented extra 
vitamins (e.g. over the counter preparations), and not 
informed their treating physicians in detail. Vitamin K, 
or at least coagulation values as surrogate parameters 
were not appreciated in this study, as vitamin K cannot 
be routinely monitored in our local laboratory and INR 
has been reported before to be an unreliable surrogate 
for vitamin K activity [22]. However, this study offers a 
real-world view on laboratory follow-up in children and 
adults with CF who started ETI.

Conclusions
ETI therapy has been shown to significantly improve 
pulmonary function and quality of live in individuals 
with CF homozygous or heterozygous for Phe508del 
which could be reproduced in a mixed cohort of chil-
dren (n = 14) and adults (n = 44) with CF. Close monitor-
ing of liver function tests is warranted with some changes 
occurring rapidly and others more in the long term. All 
patients in our cohort tolerated ETI therapy in the long-
term well and only four patients had to temporarily inter-
rupt the therapy. Isolated persistent elevation of indirect 
bilirubin might be a sign for Gilbert’s syndrome. Fat-sol-
uble vitamins and trace elements remain normal in most 
cases. It seems sensible to appreciate vitamin levels regu-
larly after initiation of ETI therapy. Vitamin supplemen-
tation needs to be continued but individual compositions 
of vitamins and trace elements might be reasonable for 
personalized CF-therapy. Some vitamin levels seem to 
rise rather slowly so follow-up is necessary. Laboratory 
follow-up seems advisable after four weeks, three, six, 
nine and 12 months of the start of ETI and at least yearly 
afterwards. Even though most patients do not require a 
change in supplementation it is important to identify 
those few who do. Especially an elevated vitamin A can 
have severe side effects on patients. Whether changes in 
vitamins and trace elements are due to improved pancre-
atic function or other reasons, for example better intesti-
nal absorption, should be the focus of future studies.
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